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Abstract This is the first large-scale experimental study

on genome-based prediction of testcross values in an

advanced cycle breeding population of maize. The study

comprised testcross progenies of 1,380 doubled haploid

lines of maize derived from 36 crosses and phenotyped for

grain yield and grain dry matter content in seven locations.

The lines were genotyped with 1,152 single nucleotide

polymorphism markers. Pedigree data were available for

three generations. We used best linear unbiased prediction

and stratified cross-validation to evaluate the performance

of prediction models differing in the modeling of related-

ness between inbred lines and in the calculation of genome-

based coefficients of similarity. The choice of similarity

coefficient did not affect prediction accuracies. Models

including genomic information yielded significantly higher

prediction accuracies than the model based on pedigree

information alone. Average prediction accuracies based on

genomic data were high even for a complex trait like grain

yield (0.72–0.74) when the cross-validation scheme

allowed for a high degree of relatedness between the esti-

mation and the test set. When predictions were performed

across distantly related families, prediction accuracies

decreased significantly (0.47–0.48). Prediction accuracies

decreased with decreasing sample size but were still high

when the population size was halved (0.67–0.69). The

results from this study are encouraging with respect to

genome-based prediction of the genetic value of untested

lines in advanced cycle breeding populations and the

implementation of genomic selection in the breeding

process.

Introduction

Genomic selection has been widely adopted in animal

breeding and is expected to revolutionize breeding meth-

odology (Schaeffer 2006; Jannink et al. 2010). The concept

of genomic selection is based on the hypothesis that with a

sufficiently high density of genome-wide marker data all of

the genetic polymorphisms contributing to trait variation

are in high linkage disequilibrium (LD) with random

markers segregating in the population under study. Geno-

mic prediction models are developed based on a large

training population for which genotypic and phenotypic

data are available. The genetic value of untested selection

candidates can then be predicted based on their genomic

information. The validity of the concept has been shown

with computer simulations (Meuwissen et al. 2001) and in

experimental studies (Luan et al. 2009; VanRaden et al.

2009). When compared to prediction models using

expected values of relatedness based on pedigree data,

accuracies of prediction for complex traits like milk

yield have increased substantially when the realized
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relationships based on molecular marker data are used for

estimating breeding values (VanRaden et al. 2009).

In maize breeding, the genetic value of inbred lines is

assessed by their testcross performance with testers from

the opposite heterotic pool in replicated multi-environ-

ment yield trials. Since in a breeding program thousands

of lines must be evaluated for their testcross performance

each year, models for predictions of the genetic potential

based on genotypic data of untested lines are highly

desirable. Until recently, prediction of testcross values of

untested individuals has not played an important role in

plant breeding. Prediction accuracies obtained with

expected values of relatedness derived from pedigree data

were not sufficient to substitute phenotypic evaluation due

to high operative heritabilities achieved with replicated

field trials at reasonable costs. However, estimating the

realized relationship between individuals from high-den-

sity marker data may increase prediction accuracies for

testcross performance substantially and thus lead to a

paradigm shift in plant breeding as has been observed for

cattle breeding. First computer simulations and experi-

mental studies performed with biparental populations in

maize and Arabidopsis (Bernardo and Yu 2007; Lorenzana

and Bernardo 2009) indicated that genotypic values were

predicted with greater accuracy using genome-wide mar-

ker data with best linear unbiased prediction (BLUP)

compared to marker subset selection with multiple linear

regression. However, the fundamental idea of genomic

selection is that ancestral functional polymorphisms are

tagged by markers and that estimated breeding values are

valid for the entire population (Meuwissen et al. 2001). It

was further demonstrated by Habier et al. (2010) that

prediction accuracy suffers, if the degree of relatedness

between the training population and the selection candi-

dates is only weak. Thus, prediction accuracies need to be

assessed with experimental material reflecting the genetic

structure of advanced cycle breeding populations com-

prising a large number of crosses and relatively few

progenies per family.

To our knowledge, this is the first experimental study in

plants reporting accuracies of genomic testcross values

estimated at the population level. The dataset in this study

consisted of 1,152 genome-wide single nucleotide poly-

morphism (SNP) markers, pedigree data and phenotypic

data on two complex traits, grain yield and grain dry matter

content from testcrosses of 1,380 elite maize inbred lines.

We used stratified cross-validation to (1) evaluate the

prediction accuracy of three approaches to modeling of

relatedness between inbred lines, (2) assess the potential of

within versus across family prediction, (3) compare the

prediction within biparental families to population-wide

prediction, and (4) determine the impact of different sam-

ple sizes on prediction accuracy.

Materials and methods

Plant material

This study comprised a total of 1,380 doubled haploid

(DH) lines of maize (Zea mays L.). Thirty-six families

were generated from crosses of 29 inbred lines and four

single crosses all belonging to the Dent heterotic group.

Resulting S0 plants were used for production of DH lines,

which was performed with the in vivo haploid induction

technology according to Röber et al. (2005). S0 plants were

pollinated with inducer line RWS and on average 38 DH

lines per cross were produced. The smallest DH family

comprised 14, the largest 60 lines. For all lines full pedi-

gree information was available up to three generations. The

four largest biparental families (BP 1–4), comprising

58–60 DH lines, were also analyzed individually to assess

prediction accuracy within individual families.

Field trial design and analysis

All 1,380 DH lines were evaluated as testcrosses with a

single-cross Dent tester in 2009 at seven European loca-

tions with similar agro-ecological conditions. Two-row

plots were machine planted and harvested as grain trials.

Data were recorded for grain dry matter yield (GDY, dt/ha)

and grain dry matter content (GDC, %). In each of the

seven locations trials were performed with one replication

and consisted of 15 sets each with 100 entries planted

according to a 10 9 10 lattice design. Each set contained

92 DH lines and four checks replicated twice. Outlying

observations were removed from the data set based on

extreme deviate standardized residuals according to

Grubbs (1950). For each environment, trait values were

adjusted for the set effects based on the means of the

replicated check varieties.

Genotypic data analysis

Genotyping of the 31 parental inbred lines and their 1,380

DH progenies was performed with 1,152 SNP markers

randomly distributed across the genome using the Illumina

VeraCode technology. For the majority of the markers, the

positions in the maize genome were known from their

alignment to the B73 RefGen_v1 sequence (Schnable et al.

2009). The average physical distance between adjacent

markers was 2.9 Megabases (Mb). Markers with more than

10% missing values or a minor allele frequency (MAF)

\ 0.01 were discarded, resulting in 589 and 732 useful

SNPs in the population of parental and DH lines, respec-

tively. Three DH lines were discarded from the analysis

due to low-quality marker data. Marker genotypes were

coded 0 or 2 depending on the number of copies of the
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minor allele. Missing marker genotypes were imputed

based on family information. If the family from which the

DH line was derived did not segregate at the SNP locus, the

missing genotype was set to the genotype carried by its

siblings. If the SNP marker did segregate in the respective

family, the genotype was substituted at random with one of

the two possible genotypes at a probability of 0.5. For the

population investigated in this study, this method was

found to be superior to the approach using flanking markers

for imputation (Wimmer et al., unpublished). In addition, it

can be applied to markers without known map position.

Linkage disequilibrium estimates were calculated

between all pairs of markers over the entire genome. The

squared correlation between alleles at two loci was used as

a measure of LD (Hill and Robertson 1968):

r2 ¼ D2
vw

pv 1� pvð Þpw 1� pwð Þ

where Dvw ¼ pvw � pvpw and pvw, pv and pw are the fre-

quencies of the haplotype vw and allele v at one locus and

allele w at the other locus. Significance of LD was tested

using a v2 test according to Foulkes (2009).

Prediction of testcross performance

Analogous to the prediction of breeding values of related

individuals in animal breeding, the testcross value of

untested DH lines can be predicted if pedigree and/or

marker data are available to model the variance–covariance

structure between DH lines. Assuming absence of epistasis,

the genotypic value of a hybrid individual obtained by

crossing random individuals from two parent populations

P1 and P2 can be given as

yi1j2 ¼ l12 þ ai1 þ aj2 þ di1j2 ð1Þ

where l12 is the cross population mean, ai1
is the effect of

the ith gamete originating from P1, aj2 is the effect of the

jth gamete originating from P2, and di1j2
is an interaction

effect (Schnell 1965; Stuber and Cockerham 1966).

Genotypic variances (r2
c) and covariances (xcc0) among

cross population relatives can be expressed as

r2
c ¼ r2

a1
þ r2

a2
þ r2

d12
ð2Þ

xcc0 ¼ U1r
2
a1
þ U2r

2
a2
þ U1U2r

2
d12

ð3Þ

with r2
a1

and r2
a2

being the variance of general combining

ability effects from P1 and P2, r2
d12

being the interaction

variance or variance of specific combining ability effects,

and U1denoting the probability that alleles originating from

P1 are identical by descent. In the special case of testcross

progenies generated by crossing fully homozygous DH

lines originating from the same breeding population (P1) to

a common tester from P2 r2
a2
¼ 0 and U2 ¼ 1 and

consequently Eqs. 2 and 3 reduce to

r2
t ¼ r2

a1
þ r2

d12
ð4Þ

xtt0 ¼ U1 r2
a1
þ r2

d12

� �
¼ U1r

2
t ð5Þ

with r2
t being the variance of unrelated testcross progenies

from P1. When only one common tester is used, the vari-

ance components due to general and specific combining

ability effects cannot be estimated independently. The

magnitude of r2
d12

depends on the type of tester and equals

zero only if the tester represents the entire gametic array of

population P2.

To predict testcross values of DH lines, we used mixed

effects models and best linear unbiased prediction (Hen-

derson 1984). In all models, the vector of phenotypes y

comprised the adjusted mean testcross performance aver-

aged across the seven locations of the N = 1,377 DH lines

with high-quality genotypic data. Models differed with

respect to modeling the variance–covariance structure of

random testcross effects.

Model 1

In Model 1, the probability that two DH lines carry alleles

identical by descent was computed based on pedigree

information. The vector of adjusted testcross means y was

modeled as

y ¼ Xbþ Ztþ e

where b is a vector of fixed effects and X is a design matrix

assigning fixed effects to the phenotypes. Fixed effects

include only the population mean and therefore X is a vector

of 1s. The vector t is a vector of testcross effects following a

normal distribution with t�Nð0;Kr2
t Þ, where K is the

N 9 N kinship matrix of DH lines calculated from three

generations of pedigree data and r2
t is the testcross variance

as defined in Eq. 4 pertaining to Model 1. Z is a design matrix

assigning the genetic testcross values to the phenotypes. The

K matrix was constructed following Bernardo (2002). When

the parents of S0 plants from which DH lines were derived

were not fully homozygous, it was assumed that only one

gamete per S0 plant was sampled and consequently only one

DH line was produced from each S0 plant. Residual effects in

the vector e are assumed to be independent and follow a

normal distribution with e�Nð0; Ir2Þ, where I is an identity

matrix and r2 is the residual variance.

Model 2

In Model 2, the variance–covariance structure of testcross

effects was modeled based on marker information. For
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calculating the realized kinship matrix between the DH

lines we adapted the method proposed by Habier et al.

(2007) and VanRaden (2008) to fully homozygous inbred

lines. The vector of adjusted testcross means is then

modeled as

y ¼ Xbþ Zuþ e

with u being the vector of testcross values following a

normal distribution u�Nð0;Ur2
uÞ, where r2

u is the

testcross variance pertaining to Model 2. Vectors b and e

and design matrices X and Z are defined as in Model 1. The

realized kinship matrix U in Model 2 was computed as

U ¼ W� Pð Þ W� Pð Þ0

8
PM

m¼1 pm 1� pmð Þ

where W is an N 9 M design matrix assigning M = 732

SNP marker genotypes coded 0 or 2 to N phenotypes, P

comprises M column vectors containing the expected

genotype score at marker locus m which is a function of the

allele frequency, i.e. 2pm for homozygous inbred lines with

pm being the allele frequency of the minor allele at marker

locus m. Following Habier et al. (2007) and considering

that with fully homozygous inbred lines the variance at

individual marker loci equals 4 pm(1 - pm) division by

8
PM

m¼1 pm 1� pmð Þ scales the matrix U to be analogous to

the kinship matrix between DH lines.

Model 3

Model 3 combines the realized and the expected kinship in

one model. The testcross variance is decomposed into a

component explained by the pedigree-based kinship and a

component based on the marker data. Consequently, the

vector of phenotypic values is modeled as

y ¼ Xbþ Ztþ Zuþ e

where vectors t and u comprise the random testcross values

based on the pedigree and genomic kinship between DH

lines, respectively. Both vectors are assumed to be inde-

pendent and follow a normal distribution with

t�Nð0;Kr2
t Þ and u�Nð0;Ur2

uÞ, where K is the pedigree-

based kinship matrix from Model 1 and U is the realized

kinship matrix based on SNP marker data from Model 2.

Vectors b and e and design matrices X and Z are defined as

in Model 1.

Model SM

In plant breeding, the genomic kinship between DH lines is

frequently estimated with an alternative measure of relat-

edness, the simple matching coefficient (SM, Sneath and

Sokal 1973). For pairs of fully homozygous lines it is

analogous to 1 - D where D is Rogers’ distance (Rogers

1972), which has been shown to be linearly related to

Malécot’s coefficient of coancestry (Malécot 1948; Mel-

chinger et al. 1991). Calculating the realized kinship matrix

between the DH lines based on the simple matching

coefficient gives Model SM, with the vector y being

modeled as

y ¼ Xbþ Zsþ e

where the vector s comprises testcross values assumed to

be randomly distributed with s�Nð0; Sr2
s Þ; r2

s is the test-

cross variance pertaining to Model SM and vectors b and

e and design matrices X and Z are defined as in Model 1.

The N 9 N matrix S of realized kinship coefficients

between DH lines was calculated from SNP data as fol-

lows. The matrix

SSM ¼
W� JN�Mð Þ W� JN�Mð Þ0þMJN�N

2M

with W being the N 9 M design matrix assigning

genotypes to phenotypes, JN9M and JN9N being a matrix

of 1s with dimensions N 9 M and N 9 N, respectively,

and M being the number of markers, gives similarity

coefficients analogous to the simple matching coefficient.

Following Hayes and Goddard (2008) each element of the

matrix SSM was transformed by subtracting the minimum

value smin of matrix SSM and standardizing by multiplying

with 1
1�smin

. This leads to the matrix

S ¼ W� JN�Mð Þ W� JN�Mð Þ0þMJN�N � 2MsminJN�N

2Mð1� sminÞ

which was used as realized genomic kinship matrix in

model SM.

In the Appendix, the dependency of the genetic variance

components pertaining to Model 2 and Model SM is given.

We also demonstrate the dependency of the genetic vari-

ance components of both models with the random regres-

sion model (Model RR) suggested by Meuwissen et al.

(2001), where genomic testcross values are predicted based

on individual SNP effects.

Variance components for all models were estimated

with residual maximum likelihood (REML) using the

ASReml software version 3.0 (Gilmour et al. 2009).

Goodness of fit of the estimated models was assessed based

on Akaike’s information criterion AIC ¼ �2Lþ 2k with

L being the value of the log-likelihood function evaluated

for the estimated parameter array and k the number of free

parameters in the model (Akaike 1974). A likelihood ratio

test according to Self and Liang (1987) was employed for

comparison of Model 3 with the nested reduced Models 1

and 2.
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Cross-validation

Fivefold cross-validation (CV) was used to assess the

prediction accuracy of the different statistical models and

sample sizes (Mosier 1951). The data set (DS) was divided

into five mutually exclusive subsets, four of them formed

the estimation set (ES) for fitting effects of the models and

the fifth subset was used as test set (TS) for testcross value

prediction. Different sampling strategies were employed to

account for family structure in the DS. Within family

sampling (CV-W) was performed for the entire DS

(N = 1,377). In CV-W, testcross progenies of each family

were subdivided into five subsets, four of them were

assigned to the ES (NES = 1,093–1,113), one to the TS.

With across family sampling (CV-A), the 36 families of the

DS were divided into four subsets of seven and one subset

of eight families. Thus, the ES comprised 28 or 29 families,

and the TS comprised the remaining families not contained

in the ES. Because the size of the families varied, the

sample size of the ES also varied from NES = 1,002 to

NES = 1,172. Assignment of genotypes to subsets was

repeated ten times resulting in 50 different CV runs for

each model.

To evaluate the effect of sample size on the accuracy of

testcross prediction, the DS with 1,377 DH lines was

divided into 2, 4 and 8 subsets resulting in an array of

subsets of size N = 688, 344 and 172, respectively. The

procedure was repeated 16 times for N = 688, 8 times for

N = 344, and 4 times for N = 172 to create 32 subsets for

each sample size. Each of them was analyzed with Model

1, 2 and 3. Fivefold CV was applied to the subsets. Sam-

pling did not take into account the family structure of the

testcross progenies.

In all CV scenarios, variance components needed for

estimation of best linear unbiased predictors in the ES were

derived from fitting the models to the DS. Average pre-

dictive abilities did not differ when variance components

were re-estimated in the ES but the computational load was

substantially greater. The population mean b̂ and the vec-

tors t̂ and û of length N were estimated from each ES.

Testcross values of DH lines in the corresponding TS were

predicted as ĝTS ¼ XTSb̂þ ZTSt̂ (Model 1), ĝTS ¼ XTSb̂þ
ZTSû (Model 2), and ĝTS ¼ XTSb̂þ ZTS t̂þ ZTSû (Model

3). Here, XTS and ZTS are design matrices where the

number of rows equals the size of the TS and the number of

columns equals one and N, respectively.

The correlation between observed and predicted test-

cross values �rðyTS; ĝTSÞð Þ describes the predictive ability of

a model and can be estimated directly from the data. The

accuracy of a model, i.e. the correlation between true and

predicted testcross values, can be approximated from the

predictive ability as rðgTS; ĝTSÞ ¼ rðyTS; ĝTSÞ=h; where h is

the square-root of the trait heritability (Dekkers 2007;

Legarra et al. 2008). For both traits, broad sense heritability

estimates were derived from variance component estimates

of Model 1 as ĥ2 ¼ r̂2
t = r̂2

t þ r̂2
� �

according to standard

quantitative genetic theory. From the ten replications of

CV the mean accuracy was calculated. The standard error

of the accuracy was calculated from the mean of the five

mutually exclusive subsets of each replication as suggested

by Luan et al. (2009). Significance of the difference in

accuracy between models was tested with Student’s paired

t-test.

With each of the models, we computed the mean pheno-

typic testcross performance of the 10% best DH lines. For

each of the ten CV runs, predicted testcross values from the

five test sets were merged and the best 140 DH lines were

selected based on their predicted testcross performance for

grain yield. The observed testcross performance of the

selected lines was averaged over the ten replications and

differences of mean phenotypic testcross performance

between models were tested with a Student’s t-test.

To obtain predictive abilities for testcross performance

within families, the four largest biparental families com-

prising 58–60 DH lines were analyzed individually. The

expected kinship was close to 0.5 for all four families.

Genomic testcross values were predicted with Model 2 and

cross-validated with fivefold random sampling repeated ten

times.

Results

Genotypic data

From the set of 732 polymorphic SNP markers 663 could

be assigned to the ten maize chromosomes. For 69 markers

the chromosomal position was unknown. The number of

SNPs per linkage group ranged from 96 on chromosome 1

to 48 on chromosome 10. In the DH population, the

average MAF was 0.19. 42% of the markers had a MAF\
0.1. The number of polymorphic SNPs within the 36

families ranged from 78 to 600. The decline of LD in the

DH population relative to the physical distance on the

reference map (Schnable et al. 2009) is depicted in Fig. 1.

As expected for an advanced cycle breeding population

substantial long-range LD was detected. For the 31 parental

inbred lines the magnitude of LD between pair-wise mar-

ker combinations is given in Supplemental Fig. 1.

Means and variance components

Adjusted testcross values of the 1,377 DH lines for GDY

averaged across the seven locations ranged from 105.69 to
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175.98 dt/ha and for GDC from 78.18 to 84.52%. Family

means varied for GDY from 132.38 to 159.52 dt/ha and for

GDC from 80.34 to 83.09%. Phenotypic correlations

between the seven locations calculated from the testcross

performance of the DH lines varied between 0.19 and 0.38

for GDY and between 0.32 and 0.64 for GDC. Models

utilizing genomic information for calculation of the kinship

matrix between DH lines showed a considerably smaller

AIC than Model 1 where the kinship was exclusively

modeled based on pedigree data (Table 1). Including a

polygenic component in addition to marker information

gave improved goodness of fit of Model 3 (p \ 0.001)

compared to Model 2 for both traits. In terms of goodness

of fit, Model 2, Model SM, and Model RR did not differ as

shown by their maximized log-likelihoods. The relation-

ship between their genetic variance components are given

in the Appendix. Dividing the estimated testcross variance

component of Model 2 (r̂2
u) by 8

PM
m¼1 pm 1� pmð Þ ¼

8� 98:6 ¼ 788:8 gives variance component r̂2
m of Model

RR. Multiplying the estimated testcross variance compo-

nent of Model RR with 2Mð1� sminÞ ¼ 2� 732�
0:504 ¼ 737:9 gives variance components r̂2

s of Model

SM.

Predictive abilities and accuracies of the different

models

Predicted testcross values calculated from Models 2, SM,

and RR were shifted by a constant but correlated with

r = 1.0. Thus, the predictive abilities and accuracies

derived from Model 2 are also representative for Models

SM and RR and therefore we will report them jointly as

results from Model 2. Predictive abilities obtained with

CV-W, i.e. within family sampling, and CV-A, i.e. across

family sampling, are shown for Models 1, 2, and 3 for both

traits in Fig. 2. For GDY and CV-W, the average predictive

ability �rðyTS; ĝTSÞð Þ of Models 2 and 3 over the 50 CV runs

was 0.66 and 0.68, respectively, which was higher

(p \ 0.001) than for Model 1 �rðyTS; ĝTSÞð Þ. Model 3 per-

formed better than Model 2 (p \ 0.001) but predicted

testcross values were highly correlated (r = 0.90). Average

predictive abilities of CV-A were reduced (p \ 0.001) and

much more variable compared to CV-W. For GDY, the

average predictive ability for Model 1 was reduced to 0.11

Fig. 1 Linkage disequilibrium between pair-wise marker combina-

tions exhibiting significant LD (p \ 0.05) within the same linkage

group as a function of physical distance on the reference map for

1,377 DH progenies. Linkage disequilibrium of SNPs located on

different linkage groups is displayed in the bar on the right-hand side

Table 1 Estimates of variance components, their standard errors, mean (l), log-likelihood (Log L) and Akaike’s information criterion (AIC) for

testcross progenies of 1,377 DH lines evaluated in seven locations estimated with five statistical models

Model r̂2
t r̂2

u r̂2
s r̂2

m r̂2 l Log L AIC

Grain dry matter yield

1 79.36 ± 19.49a 14.86 ± 10.3 148.14 -3,499.69 7,003

2 84.44 ± 10.50 34.92 ± 1.56 151.39 -3,343.46 6,691

3 36.92 ± 12.14 70.39 ± 9.46 14.37 ± 6.45 150.01 -3,318.45 6,643

SM 79.00 ± 9.86 34.92 ± 1.56 137.13 -3,343.46 6,691

RRb 0.107 ± 0.013 34.92 ± 1.56 148.46 -3,343.46 6,691

Grain dry matter content

1 0.862 ± 0.22 0.1524 ± 0.12 81.51 -376.53 757

2 1.380 ± 0.15 0.2842 ± 0.01 81.43 -123.12 250

3 0.213 ± 0.09 1.282 ± 0.14 0.1673 ± 0.05 81.37 -113.39 233

SM 1.291 ± 0.14 0.2842 ± 0.01 81.43 -123.12 250

RR 0.0017 ± 0.0002 0.2842 ± 0.01 81.99 -123.12 250

a Standard error attached
b For details on Model RR see Appendix
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and was lower than 0.43 for all models. Average predictive

abilities for GDC were generally higher than for GDY in

both CV schemes.

Average accuracies of CV-W and CV-A for the different

models are shown for both traits in Table 2. Heritability

estimates for the two traits were calculated from estimated

variance components of Model 1 as ĥ2 ¼ 0:84 with a 95%

confidence interval from 0.82 to 0.86 for GDY and ĥ2 ¼
0:85 with a confidence interval from 0.83 to 0.86 for GDC.

The size of the data set had a significant effect

(p \ 0.001) on the accuracy of predicting testcross per-

formance for grain yield with all models (Table 3). The

reduction in accuracy was more pronounced for Models

2 and 3 than for Model 1, but performance of the

models with genomic information was still significantly

better.

Within each of the four biparental families the number

of polymorphic markers varied from 116 to 212 (Table 4).

Average predictive abilities differed significantly between

families and varied from 0.24 to 0.54 for GDY and from

0.43 to 0.78 for GDC. Except for GDC in BP 3 predictive

abilities were smaller than those obtained with the full data

set.

Discussion

The current knowledge about the accuracy of predicting

phenotypic performance from genome-wide random SNP

markers has mainly been inferred from computer simula-

tions (Bernardo and Yu 2007; Zhong et al. 2009). Recently

published results from biparental maize and Arabidopsis

populations (Lorenzana and Bernardo 2009) and a panel of

diverse wheat and maize inbred lines (Crossa et al. 2010),

have given first indications that breeding for complex traits

Fig. 2 Predictive abilities obtained with cross-validation with within

family sampling (CV-W) and across family sampling (CV-A) for

Models 1, 2 and 3 for traits grain dry matter yield (a) and grain dry

matter content (b). The symbol 9 indicates the mean

Table 2 Average prediction accuracies and their standard errors

derived from cross-validation with within family sampling (CV-W)

and across family sampling (CV-A) for Models 1, 2 and 3 for traits

grain dry matter yield (GDY) and grain dry matter content (GDC)

Model CV-W CV-A

GDY GDC GDY GDC

1 0.56 ± 0.001a 0.54 ± 0.001 0.12 ± 0.039 0.33 ± 0.017

2 0.72 ± 0.002 0.78 ± 0.001 0.48 ± 0.012 0.64 ± 0.013

3 0.74 ± 0.002 0.79 ± 0.001 0.47 ± 0.017 0.64 ± 0.010

a Approximate standard errors attached

Table 3 Average prediction accuracies as well as their standard

errors derived from cross-validation with random sampling for grain

dry matter yield obtained with decreasing sample sizes (N = 1,377,

688, 344, 172) for Models 1, 2 and 3

Model Sample size (N)

1,377 688 344 172

1 0.55 ± 0.001a 0.53 ± 0.002 0.51 ± 0.004 0.43 ± 0.005

2 0.72 ± 0.002 0.67 ± 0.002 0.62 ± 0.002 0.51 ± 0.004

3 0.74 ± 0.002 0.69 ± 0.002 0.63 ± 0.002 0.53 ± 0.005

a Approximate standard errors attached

Table 4 Average predictive abilities obtained with Model 2 and

cross-validation with random sampling for the four largest biparental

families for grain dry matter yield (GDY) and grain dry matter con-

tent (GDC)

Family Sample size Ma Predictive ability

GDY GDC

BP 1 58 116 0.24 ± 0.037 0.43 ± 0.030

BP 2 60 132 0.45 ± 0.034 0.55 ± 0.026

BP 3 60 162 0.53 ± 0.036 0.78 ± 0.015

BP 4 59 212 0.54 ± 0.030 0.52 ± 0.024

a Number of polymorphic markers
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might benefit from incorporating genomic information in

the selection process. However, these studies do not

address prediction of testcross performance at the level of

advanced breeding populations. In this study, we investi-

gated the accuracy of predicting testcross performance of

DH lines of maize derived from 36 crosses for two

important quantitative traits, grain dry matter yield and

content. Based on results from quantitave trait loci (QTL)

mapping studies in large biparental populations (Melchi-

nger et al. 1998; Schön et al. 2004) we inferred that the

genetic architecture of these two traits can be approximated

with Fisher’s infinitesimal model. For traits regulated by a

large number of genes with small effects and populations

with strong long-range LD, mixed effects models have

been shown to perform equally well with respect to pre-

diction accuracies as Bayesian methods (Lorenzana and

Bernardo 2009; Zhong et al. 2009; Piepho 2009; Crossa

et al. 2010). These findings could be corroborated for

this data set. Variable selection models, e.g. BayesB

(Meuwissen et al. 2001), did not outperform Model 2

(Wimmer et al., unpublished).

When comparing the performance of the respective

prediction models across traits, inferences must be based

on prediction accuracies calculated from the ratio of the

predictive abilities obtained from CV and the square-root

of the trait heritability (Dekkers 2007). As pointed out by

Piepho and Möhring (2007), estimation of the trait herita-

bility in an advanced cycle breeding population is not

straight forward if genotypes are not independent and the

kinship matrix is used for modeling genetic effects. Further

research is needed to address the problem of calculating

progeny-mean heritabilities in kinship-based models. We

estimated trait heritability using the standard formula h2 ¼
r2

t = r2
t þ r2

� �
and variance component estimates derived

from pedigree-based Model 1 being aware that these might

lead to inflated estimates of h2 (Piepho and Möhring 2007).

We chose this estimate because it resulted in conservative

estimates for the prediction accuracies.

Accuracies obtained with pedigree and genome-wide

marker data

Independent of the CV scheme employed, the models

based on genome-wide marker data performed significantly

better than the model based on pedigree data alone. As

pointed out by Goddard (2008), for predicting the magni-

tude of this increase in accuracy, the effective number of

segregating loci in the population under study is most

relevant. In an advanced cycle breeding population with

small effective population size and doubled haploid lines

mostly generated from biparental crosses, extensive long-

range LD is expected and was shown for the experimental

material under study (Fig. 1). Consequently, the variation

in realized genetic relationship among DH lines sharing the

same pedigree is high (Fig. 3), leading to an increase in

prediction accuracy for models using genomic data. For

264 DH lines of a randomly chosen test set from CV-W,

Fig. 4 illustrates predicted testcross values of DH lines for

grain yield derived from Models 1 and 2 relative to their

respective family mean calculated from adjusted means of

the full data set. While in Model 1 testcross performance of

Fig. 3 Estimates of expected kinship coefficients between DH lines

based on pedigree data (Matrix K, Model 1) against realized kinship

based on marker data (Matrix U, Model 2). The correlation coefficient

(r) between the values of both kinship matrices is displayed in the

graph

Fig. 4 Predicted testcross values obtained from one random test set

of within family cross-validation (CV-W). Testcross values predicted

with Model 1 and Model 2 are plotted against their respective family

means calculated from adjusted means of the full data set for grain dry

matter yield
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all DH lines derived from the same cross is predicted by the

same value, variation of testcross values predicted with

Model 2 is large within each of the 36 families leading to a

higher prediction accuracy.

Including genome-wide marker and pedigree informa-

tion in the model (Model 3) improved prediction of test-

cross performance significantly but only to a small extent

and only with CV-W. A modest improvement of predictive

abilities of models including pedigree information in

addition to marker data was also observed by Crossa et al.

(2010). Goddard (2008) pointed out that including a

polygenic term in the model might be beneficial for cap-

turing the effects of alleles with low frequency. However,

the relative performance of Model 3 was equal compared to

Model 2 when predictions were calculated for distantly

related DH lines in CV-A (Table 2). If high-quality pedi-

gree and genome-wide marker data are available for all

individuals in model training and prediction, Model 3 is not

expected to consistently outperform Model 2 with mixed

effects models due to the redundancy of the data.

Our conclusions on the relative performance of the three

models were also confirmed when comparing the mean

phenotypic testcross performance of the 10% best lines

selected based on their predicted testcross performance for

grain yield. Lines selected based on predictions from

Models 2 and 3 performed significantly better than those

selected based on Model 1 with both CV schemes, but

Model 3 did not have an advantage over Model 2. How-

ever, further research is needed to assess the relative per-

formance of Models 2 and 3 when pedigree and marker

data are not redundant but complementary or show dif-

ferent levels of precision.

Comparison of cross-validation schemes

The prediction accuracy differed greatly depending on the

stratification procedure employed in CV. CV-W yielded

high average accuracies for both traits, when the genetic

relationship between DH lines was modeled based on

genomic data �rðgTS; ĝTSÞ� 0:72ð Þ. These high values are in

accordance with analytical and computer simulation results

presented by Hayes et al. (2009b) who also showed high

prediction accuracies within families as compared to ran-

dom mating populations. The high accuracies obtained

with CV-W are the result of high levels of relatedness

between DH lines in the estimation and the test sets and

long-range haplotype blocks within families leading to

high LD between markers and QTL affecting the trait

under study. Therefore, the given accuracies must be

considered valid only for predictions of the performance of

close relatives of the material under study.

In contrast, average prediction accuracies were signifi-

cantly lower with CV-A. As compared to CV-W, the

relative contribution of relatedness to the prediction accu-

racy is expected to decrease in CV-A and the relative

importance of LD between markers and QTL is expected to

increase with models utilizing genomic information. The

low average accuracies obtained in CV-A with Model 1

�rðgTS; ĝTSÞ� 0:33ð Þ indicated that in the population under

study, families derived from different crosses were only

distantly related by pedigree. Prediction accuracies for

Models 2 and 3 also decreased with CV-A as compared to

CV-W, but not as severely as with Model 1. Thus, the

reduced level of relatedness had a strong effect on pre-

diction even for models using genomic information, but

prediction accuracies remained at a medium level, indi-

cating that substantial LD between the markers and QTL

was captured by the markers. It needs to be noted, however,

that accuracies varied considerably more between the 50

CV-A test sets as compared to CV-W, presumably as the

result of the highly variable degree of relatedness between

the DH lines in the estimation and the corresponding test

sets, indicating that relatedness was still a component of

the prediction accuracy. On the other hand, the larger

variation of accuracies in CV-A might also result at least

partly from the more variable sample sizes of the ES and

TS in CV-A as compared to CV-W. Accuracies for dry

matter content in CV-A were significantly higher than for

grain yield, which was surprising because heritability

estimates were quite similar for the two traits. This could

be an indication that the trait GDC is controlled by fewer

genes with larger effects which are better captured by the

markers as compared to GDY.

As suggested by Luan et al. (2009), we calculated the

regression of the observed on the predicted testcross per-

formance in the 50 test sets of CV-W and CV-A. If the

regression deviates from 1 this can be interpreted as a bias

in predicted testcross values. A regression coefficient \1

implies inflation, a coefficient [1 deflation of predicted

testcross values relative to their observed phenotypes. In

CV-W, mean regression coefficients ranged from 0.94

(Model 2) to 1.02 (Model 1) indicating only a modest

inflation of predicted testcross values for Model 2. In CV-

A, however, regression coefficients ranged from 0.20

(Model 1) to 1.07 (Model 2) reflecting a strong upward bias

in predicted testcross values for Model 1.

Accuracies in biparental families

Analytical results and computer simulations showed that

prediction accuracies that can be obtained with full sib

families are substantially higher than those for random

mating populations because allele effects are estimated

more accurately and the effective number of independently

segregating loci controlling the phenotype is reduced

(Hayes et al. 2009b). In addition, when model training is
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performed across families with relatively low marker

densities, inconsistent linkage phases between SNP mark-

ers and QTL might reduce the prediction accuracy in a

population-wide approach. Therefore, we assessed geno-

mic predictive abilities obtained with Model 2 and random

sampling CV individually for four biparental families. The

predictive abilities were higher for those families with

more polymorphic markers indicating that marker coverage

might have been a limiting factor in prediction of testcross

values. Prediction accuracies were tremendously variable

between the 50 CV runs within each family, most likely a

result of the small sample size. Considering the substan-

tially higher and much less variable predictive abilities

obtained when using the full data set and CV-W, we follow

Jannink et al. (2010) in their argumentation that it does not

seem appropriate to perform model training within indi-

vidual families not taking into account information from

related families or population-wide LD.

Modeling the kinship of DH lines

The estimation of genomic relatedness was one of the first

applications of molecular markers in plant breeding and

has been successfully used for management of heterotic

pools and diversity analyses. Many different measures of

relatedness have been proposed for quantifying the kinship

between pairs of individuals (Reif et al. 2005). In maize

breeding, estimates of kinship between fully homozygous

inbred lines are frequently calculated from the proportion

of shared marker alleles corrected for the average propor-

tion of alleles alike in state between unrelated individuals

in the population under study (Bernardo 1993). In Model

SM we followed a similar approach, but instead of cor-

recting with the proportion of alleles alike in state esti-

mated from unrelated individuals, we used the minimum

value of alleles shared between DH lines (smin) as sug-

gested by Hayes and Goddard (2008). The reason was that

subtracting the average proportion of alleles alike in state

determined from unrelated individuals can lead to the

violation of the assumption of the variance–covariance

matrix S being positive semidefinite. As has been shown in

the Appendix, the choice of the correction factor in Model

SM will affect the estimated variance components in a

predictable form and predicted testcross values from Model

SM will be shifted in scale but ranked identically when

compared to Model 2 and Model RR.

In Model 2, the kinship between DH lines is estimated

from genome-wide covariances of allele counts which can

be interpreted as deviations of allele sharing from that

expected for unrelated individuals. As pointed out by

Habier et al. (2007), correction of allele counts with their

expected values subtracts the same constant for all indi-

viduals in the population under study and thus only leads to

a scale-shift. Analogously as for Model SM, testcross

values predicted with Model 2 are shifted in scale but

ranked identically when compared to Model RR. Thus, for

estimation of the realized genetic relationship matrix based

on genome-wide marker data, we decided to focus on

Model 2, because if estimators of kinship coefficients are

linear combinations of one another their prediction accu-

racies are identical. One advantage of Model 2 is, that with

the high marker densities expected in future analyses the

computational burden of Model 2 is substantially reduced

compared to Model RR.

Application of genomic selection in maize breeding

The results from this study give first insights into the

potential of genome-based prediction of testcross perfor-

mance in maize. The population under study was chosen to

be representative of a typical advanced cycle breeding

population with respect to family structure, allelic diver-

sity, and extent of LD. The marker density (M = 732)

warranted good genome coverage across the entire popu-

lation and within families. Family means of the 36 crosses

varied significantly for grain yield (132.4–159.5 dt/ha) and

grain dry matter content (80.3–83.1%). The size of the

training population was large (N = 1,377). However, pre-

diction accuracies obtained with the given experimental

material can only be taken as points of reference and must

be interpreted within their specific context. The number of

test environments was rather high for a first testcross

evaluation and the trial design was completely balanced.

Accuracies obtained with CV-W of Model 2 are indicative

for predicting the testcross performance of DH lines

without phenotypes from the same cycle of selection and

with close relatives in the training population. Assuming

that a certain degree of relatedness generally persists in

breeding populations, accuracies obtained with CV-A of

Model 2 should provide a realistic estimate for the pre-

diction accuracy of DH lines not necessarily closely related

to lines in the training population, but from the same cycle

of selection. Prediction of performance in subsequent

cycles of selection is yet to be investigated. The effects of

recombination and selection, marker 9 year interactions,

or the use of a different tester will decrease prediction

accuracies. Thus, constant updating of the prediction model

will be essential for genomic selection to become useful in

the breeding process. The design of the training population

with respect to sample size, number and type of crosses,

number of progenies per cross, number of test environ-

ments and testers still need to be investigated. In this study,

estimation sets of size NES = 550 (data set N = 688) still

performed quite well with prediction accuracies larger

than 0.67 for grain yield, most likely the result of the high

trait heritability. It needs to be kept in mind, however,
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that with decreasing sample size prediction accuracies

became more variable, which might be even more pro-

nounced when predicting the performance of distantly

related individuals.

To our knowledge this is the first experimental study in

plants reporting prediction accuracies for genomic testcross

values estimated at the population level. For the given

marker density and sample size, accuracies were high

especially when compared to values reported in the liter-

ature for random mating populations in animal breeding

(Hayes et al. 2009a; Moser et al. 2010). Thus, our results

were encouraging with respect to genome-based prediction

of the genetic value of untested lines in advanced cycle

breeding populations and the implementation of genomic

selection in the breeding process. However, many ques-

tions remain concerning the application of genomic

selection in plant breeding. One of the crucial points will

be to quantify the relative contributions of relatedness and

LD between markers and functional polymorphisms to the

prediction accuracy in highly structured plant populations.
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Appendix

In this Appendix we show the functional dependency of the

genomic variance components pertaining to Model 2,

Model SM and the random regression model suggested by

Meuwissen et al. (2001) denoted Model RR.

All three models can be seen as special cases of a more

general model

y ¼ Xbþ ðW�QÞmþ e

where b is a vector of fixed effects and X is a design matrix

assigning fixed effects to the phenotypes, W is an N 9 M

design matrix assigning M SNP marker genotypes coded 0

or 2 to N phenotypes. Random marker effects in vector m

are assumed to follow a normal distribution with

m�Nð0; Ir2
mÞ, where I is an identity matrix and r2

m

denotes the proportion of the testcross variance contributed

by each individual SNP marker. Q is an N 9 M matrix

composed of M uniform column vectors Q ¼
q1c; q2c; � � � ; qMcf g where qm is a scalar correction term for

marker m and c is a column vector of length N containing

only 1s.

The estimated SNP effects and the corresponding vari-

ance component r2
m in the general model are unaffected by

the choice of Q, since subtracting the correction terms

shifts the intercept, but does not change the slope of the

regression of the phenotype on each SNP (Habier et al.

2007; Piepho 2009). For Model RR, Q is the null matrix,

but the same variance components as estimated from

Model RR will be received with any other Q.

For Model 2 the kinship between lines i and j is modeled

by the matrix U calculated as

U ¼ ðW� PÞðW� PÞ0

8
PM

m¼1 pmð1� pmÞ

and the variance–covariance matrix of the phenotype

vector y can be written as

VModel2 ¼
ðW� PÞðW� PÞ0

8
PM

m¼1 pmð1� pmÞ
r2

u þ Ir2

Using Q ¼ P in the generalized model, the variance–

covariance matrix of the phenotype vector y is

VP ¼ ðW� PÞðW� PÞ0r2
m þ Ir2

Hence, VModel2 ¼ VP if

r2
u ¼ r2

m � 8
XM

m¼1
pmð1� pmÞ

In Model SM, the matrix S can be written as

S ¼ ðW� JN�MÞðW� JN�MÞ0

2Mð1� sminÞ
þ M � 2Msmin

2M � 2Msmin

JN�N

The second term reflects a constant, which is added to

all elements of the matrix. This is equivalent to a constant

random block effect and thus fully confounded with the

fixed intercept (Piepho et al. 2008; Williams et al. 2006).

Hence, ignoring the second term will not affect the

estimated variance components.

The numerator of the first term of S is a special case of

the numerator of the generalized model with Q ¼ JN�M ,

i.e. assuming qm ¼ 1 for all loci, which is equivalent to the

assumption of allele frequency pm ¼ 0:5 for all SNPs in

Model 2. Using the same argument as above,

VSM ¼
ðW� JN�MÞðW� JN�MÞ0

2Mð1� sminÞ
r2

s þ Ir2

For the special case Q ¼ JN�M in the general model, the

variance–covariance matrix of the phenotype vector y is

VJ ¼ ðW� JN�MÞðW� JN�MÞ0r2
m þ Ir2

and VSM ¼ VJ if

r2
s ¼ r2

m � 2Mð1� sminÞ:
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